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In a previous paper we analysed the stability to small disturbances of stationary 
stratified fluid which is unbounded. Various forms of the undisturbed density 
distribution were considered, including a sinusoidal profile and a function of the vertical 
coordinate z which is constant outside a central horizontal layer. Both these types of 
stratification are so unstable that the critical Rayleigh number is zero. In this sequel we 
make the study more complete and more useful by taking account of the effect of a 
vertical circular cylindrical boundary of radius a which is rigid and impermeable. As 
in the previous paper we assume that the undisturbed density distribution is steady. 

The case of fluid in a vertical tube with a uniform density gradient is useful for 
comparison, and so we review and extend the available results, in particular obtaining 
growth rates for a disturbance which is neither z-independent nor axisymmetric. A 
numerical finite-difference method is then developed for the case in which 
dp/dz = po K A  cos KZ. When K a  + 1 the relation between growth rate and Rayleigh 
number approximates to that for a uniform density gradient of magnitude po K A  ; and 
when ~a % 1 the tilting-sliding mechanism identified in the previous paper is relevant 
and the results approximate to those for an unbounded fluid, except that the smallest 
Rayleigh number for a neutral disturbance is not zero but is of order ( ~ a ) ~ ' .  In the case 
of an undisturbed density which varies only in a central layer of thickness I ,  the same 
mechanism is at work when the horizontal lengthscale of the disturbance is large 
compared with I, resulting in high growth rates and a critical Rayleigh number which 
vanishes with I/a. Estimates of the growth rate are given for some particular density 
profiles. 

1. Introduction 
This paper is a sequel to the study of instability of stationary stratified fluid described 

in our earlier publication (Batchelor & Nitsche 1991, to be referred to as BN1). In that 
paper we considered the behaviour of small disturbances to unbounded fluid with 
vertical density profiles of unconventional form. In one particular case the profile was 
sinusoidal and in another the fluid density was uniform except in a central layer. 
Surprisingly, the fluid is so unstable in these two cases (regardless of the distribution 
of density within the central layer in the second case) that for sufficiently small 
horizontal wavenumber there exists a neutral disturbance, however small the Rayleigh 
number. Disturbances with large horizontal lengthscale are efficient in releasing 
potential energy, and large-scale tilting and relative sliding of the initially horizontal 
plane layers of heavy or light fluid is an especially effective mechanism. 

t With an appendix by M. R. E. Proctor. 
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The focus in the previous paper was on the novel undisturbed density profiles, and 
for simplicity it was assumed that no boundaries are present. Here we give the 
investigation more practical relevance by supposing that the fluid is contained within 
a vertical cylinder whose cross-section is circular. Horizontal boundaries are again 
absent. Disturbances with indefinitely large horizontal lengthscale are excluded by the 
presence of the boundary, and so a non-zero critical wavenumber may be expected. 
Our general purpose is to clarify the mechanical processes involved in the growth of 
small disturbances and to obtain quantitative information about the effect of rigid 
insulating containing walls. 

The specific vertical distributions of density in the undisturbed fluid that we shall 
consider are as follows: 
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(i) uniform density gradient ; 
(ii) sinusoidal density variation ; 
(iii) uniform density outside a central layer. 

Publications on the classical case (i) go back over a number of years, and we include 
it within the scope of this paper mainly for purposes of comparison. However, the 
available results for the instability of fluid with a uniform gradient in a vertical cylinder 
are by no means complete and some new developments will be presented here. The case 
of fluid with a sinusoidal distribution of density, now in a vertical tube of circular cross- 
section, is again our primary concern owing to its potential application to the 
secondary instability of a fluidized bed (Batchelor 1991). A number of interesting 
results were found in BN 1 for the third type of density distribution, in which variations 
are confined to a central layer, and we shall enquire here whether and how they are 
modified by the presence of a cylindrical boundary. 

As in BN1 the fluid is assumed to be viscous and incompressible, and the conserved 
physical quantity that determines the density of the fluid (e.g. mass of a solute in liquid) 
is transported with a molecular diffusivity D. Note that we again suppose that the effect 
of diffusion on the density distribution in the undisturbed state may be ignored, so that 
an undisturbed state in which the fluid is stationary and the density varies only in the 
vertical direction is steady. This convenient assumption cannot be justified generally, 
except of course when D = 0 or the undisturbed density gradient is uniform, but it is 
allowable in some particular circumstances which are readily recognized when the 
behaviour of small disturbances of different kinds has been analysed. For example, the 
Rayleigh number for a neutral disturbance of small horizontal wavenumber in 
unbounded fluid whose density is uniform except in a central layer is found to depend 
primarily on the total excess mass of the layer per unit area of the horizontal plane, and 
this quantity is unchanged by diffusion. 

After setting out the disturbance equations in $2 and noting the simple structure of 
the problem when u = 0, D = 0, we shall consider in turn the three types of density 
distribution in the undisturbed state in R3, 4 and 5 .  Section 6 is a resume of what we 
have found in the two papers together. 

2. The disturbance equations and boundary conditions 

linearized equations for the small disturbance quantities u, p‘,p’ are as follows : 
The notation here is exactly the same as in BN1. It was shown in that paper that the 

v - u  = 0, (2.1) 

au p’g Vp’ 
at Po Po 
- + Y V 2 U ,  
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in which the vertical coordinate z and the corresponding velocity component w are 
positive upwards and po +pl(z) is the fluid density in the steady undisturbed state, the 
variable part p1 being small compared with po in order to allow use of the Boussinesq 
approximation and a linear relation between fluid density and solute concentration (or 
similar quantity). It is possible by manipulation of these equations to obtain the well- 
known equation containing only the one dependent variable w, namely 

where the suffix h means ‘in the horizontal plane’. Once w has been found, the other 
disturbance quantities p’, p’ and uh are given respectively by (2.3) and 

V2p’ = g .  Vp’ (2.5) 

and 

We suppose that the fluid is contained within a vertical cylinder with a rigid 
impermeable circular boundary of radius a. The boundary conditions to be satisfied 
by the disturbance are then 

w = 0,  i3pp’/i3r = 0, uh = 0 at r = a for all z, (2.7) 

where r is the horizontal distance from the cylinder axis. 
It will be assumed that normal modes exist, in which case 

w, p’, uh cc eyt (2.8) 

The inviscid diffusionless limit 

The above system of equations and boundary conditions becomes much simpler in the 
limit v --f 0, D + 0. There are circumstances in which the disturbance Reynolds number 
y12/v and the corresponding Ptclet number y12/D (where 1 is a length characteristic of 
the disturbance) are large, and it is worthwhile therefore to examine this limit. In this 
preliminary section we formulate the stability problem for a fluid with v = 0 and D = 0 
for later use. In this case, (2.9) for w reduces to 

g dP1 2 
v2w = - -vh w. 

Y2Po dz 

A solution such that w is of the separable form 

then exists provided 
w = eyt W(z) F(xh) 

V2F=-a2F,  $+a2W(---I) g dP1 = o ,  
Y2Po dz 

(2.10) 

(2.11) 

( 2 . 1 2 ~ ~  b)  

where xh is the horizontal component of the position vector and a is a generalized 
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wavenumber parameter. The magnitude of W is arbitrary, but F will be normalized by 
the convenient relationship 

S S P d S  = i, (2.13) 

where S is the area of the cross-section of the containing cylinder. The corresponding 
expression for uh is seen from (2.1) to be 

(2.14) 

The one surviving boundary condition at a rigid cylindrical wall is 

a F p r  = 0 at r = a, (2.15) 

and this serves to determine the generalized wavenumber a. 
Equation (2.12a) and the boundary condition (2.15) are satisfied by 

F(xh) = cJn(ar)cosnf9, Jk(aa) = 0, (2.16a, b) 

where (r,  8) are the polar coordinates in the horizontal plane and according to (2.13) 
c is given by 

n2 
Jz(ar) cos' n 8  r dr d8 = (1 - =) J;(aa) (2.17) 

on making use of the known integral properties of Bessel functions. There is an infinite 
set of values of aa satisfying (2.16 b) for each of the infinite set of integral values of n, 
and the smallest permissible value of aa is of order unity. 

The remaining task is to calculate the growth rate y in terms of a as an eigenvalue 
of (2.12b) for W(z). However, we cannot go further without specifying the vertical 
distribution of density in the undisturbed state. We note that (2.12b) for W also 
governs the behaviour of a disturbance in unbounded and inviscid diffusionless fluid 
which varies sinusoidally in a horizontal direction with arbitrary wavenumber a (this 
being a single Fourier component with respect to x). 

The case of unbounded inviscid diffusionless fluid whose density is either sinusoidal 
in z or uniform outside a thin central layer was considered briefly in 87 of BN1, and 
later we shall supplement (and correct) that previous calculation of growth rates in 
view of the new-found generality of the results. 

3. A uniform density gradient in the undisturbed state 
In this case dpJdz is constant, and (2.9) becomes a homogeneous linear equation 

with constant coefficients to which eigenvalue analysis of conventional form is 
applicable. A number of results for the growth of small disturbances to fluid in a 
vertical cylinder of circular or rectangular cross-section have been published, and we 
shall review and extend those relating to a circular cylinder before discussing cases of 
non-uniform density gradient in the later sections. 

3.1. General analysis 
A disturbance of arbitrary form may be Fourier-analysed with respect to z here, and 
the different Fourier components do not interact. It is sufficient therefore to consider 
a disturbance of the form 

w = eyt cos KZ F(x,), p' cc cos KZ, uh cc sin KZ. (3.1) 
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Equation (2.9) then reduces to 
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If there were no boundaries present the problem would be completed by putting 
F K sin ax and solving explicitly the resulting quadratic equation for the growth rate y 
(see BNI, $3). When cylindrical walls are present we may proceed by observing that 
any solution of 

is also a solution of (3.2) provided a2 satisfies the equation 
V 2 F  = -a2F (3.3) 

The equation (3.4) in general will yield three roots for a' and so three independent 
solutions for w of the form (3.1). There are three corresponding solutions for p', found 
from (2.3), and for uh, found from (2.6). However, there are four scalar boundary 
conditions in (2.7) to be satisfied, and it is not obvious where the required fourth 
independent solution comes from. There is no difficulty when the disturbance motion 
is two-dimensional or axisymmetric, since there are then only three scalar boundary 
conditions; nor is there any difficulty when K = 0 and the disturbance streamlines are 
vertical everywhere, because there are then only two independent solutions of (3.4) for 
a2 and only two boundary conditions. Each of the cases of uniformly stratified fluid in 
a vertical circular cylinder with no-slip impermeable walls for which a solution has 
been found hitherto is in fact subject to one of these restrictions. 

The missing independent solution is a complementary function of (2.6) for uh. The 
expression 

represents a motion in the horizontal plane which satisfies (2.1)-(2.3) with w, p' and p' 
equated to zero provided &xh) satisfies 

uh = eYt sin Kzg x v~((x,)  (3.5) 

Thus (3.5) is an independent solution of the governing equations when 

v2F = ( K 2  + y /V)  F. (3.6) 
This fourth independent solution describes a distribution of vorticity generated at a 
vertical rigid boundary, and is zero for geometrical reasons when the disturbance is 
axisymmetric or z-independent. The need to take account of the vertical vorticity 
generated at the boundary in a similar stability problem with stress-free boundary 
conditions has been noted by Jones & Moore (1979). 

An appropriate solution of (3.3) for the function Fin the case of a circular cylindrical 
boundary is 

F(x,, a)  = CJn(ar) cos n8, 

where r ,8 ,z  are cylindrical coordinates, C is an arbitrary constant and n is the 
azimuthal mode number. There are three roots of (3.4) for a', say a:, a:, a:, whence the 
general expression for the vertical velocity component w is 

3 

W = eyt COS KZCOS n8 C ,  Jn(a, r). 
p=1 

(3.7) 
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The corresponding expression for p‘ is seen from (2.3) to be 
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and that for the particular integral of (2.6) is 

K C  
u t )  = - eYt sin KZ + V{ Jn(ap r)  cos ne}.  

p=1 ap 
(3.9) 

The remaining independent solution needed for satisfaction of the four scalar 
boundary conditions (2.7) is provided by the complementary function (3.5) for u,, in 
which k is given by (3.6). Thus 

Uh = up’ + u p ,  (3.10) 

where u r )  = eYt sin KZ C, g x v{J,(a, r )  sin no} (3.1 1) 

and a: = - K ’ - Y / V .  (3.12) 

The four scalar boundary conditions specified in (2.7) yield four linear homogeneous 
equations for the constants C,, C,, C,, C,. The condition for these constants to be non- 
zero is that the fourth-order determinant formed from the coefficients of C,, C,, C,, C, 
in the expressions for w, ap’lar, and uh, as given by (3.7), (3.8) and (3.10) (with (3.9) 
and (3.11)) respectively at r = a, should be zero. This determinantal equation is the 
required eigenvalue relation giving ya2/(vD)i in terms of n,  Ka,  v/D and the Rayleigh 
number 

3.2. Specific results for unstable modes 
The first work on the stability of stationary uniformly stratified fluid contained in a 
vertical circular cylinder appears to have been by Hales (1937), who was interested in 
the mechanism of geysers. He supposed, although later work has shown this to be 
incorrect, that the disturbance which grows at the smallest value of R would be 
axisymmetric. This corresponds to the choice n = 0 in the above relations, in which 
case the complementary function for uh given by (3.1 1) is identically zero and the three 
scalar boundary conditions are matched by the three remaining fundamental solutions. 
Hales carried the calculation to completion and found values of R for a neutral 
disturbance (y = 0) as a function of the vertical wavenumber K a .  Later Yih (1959) 
confirmed and extended these calculations to a larger range of values of Ka. The 
smallest value of R for which a neutral disturbance exists in this case n = 0 is 452, and 
occurs at K = 0. 

The fact established by Hales (and also later, analytically, by Yih 1959), that the 
critical axisymmetric disturbance to uniformly stratified fluid is a steady motion with 
straight vertical streamlines, seems likely to be true also for disturbances with other 
values of the azimuthal mode number n. Dr M. R. E. Proctor, who was kind enough 
to read this paper in draft form, told us he could prove that the neutral disturbance 
with the smallest Rayleigh number occurs at K = 0 for any value of n, and at our 
invitation he gives his proof in the Appendix. 

When K = 0 there are only two roots of (3.4) for a’, and for a neutral disturbance 
they are 

a; = Rt/a2,  a’ - - - Ri/a2. (3.13) 
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FIGURE 1. Rayleigh number R( = (gu4/Dvp,,) (dp,/dz)) as a function of the vertical wavenumber K for 
a neutral disturbance to stationary fluid with uniform density gradient in a vertical circular cylinder 
for each of the three azimuthal modes of lowest order. There is a sequence of neutral disturbances 
with different values of R for given n and KU, and only the smallest value of R is shown. The broken 
curve represents the asymptotic relation (3.18) which is independent of the presence of the cylindrical 
boundary. 

log10 k-a 

The only two boundary conditions when K = 0 are 

w = 0, at r = a, 

and the condition that the two constants C, and C, in (3.7) and (3.8) should be non- 
zero when y = 0 is then 

.I,(@ JL(iRi) = iJ,(i&) .I;(&). (3.14) 

Following Yih (1959), one may then find the smallest roots of this equation, for the first 
three azimuthal modes of a neutral disturbance with K = 0: 

n =  0 1 2 
R = 452.0 67.96 328.9. 

At larger values of n the critical Rayleigh numbers are above that for n = 2. The mode 
n = 1 is clearly more effective in converting the potential energy in the undisturbed 
fluid to kinetic energy of the disturbance without too much dissipation or diffusion. 

The first recognition of the importance of the mode n = 1 was by Taylor (1954), who 
stated in a review lecture about mass transport in tubes that his analysis of the 
instability of stratified fluid in a circular tube led to the conclusion that the fluid is 
stable for Rayleigh numbers less than 67.94. It seems likely that he hypothesized that 
the critical disturbance would be one for which K = 0, and that he worked out the 
critical value of the Rayleigh number (perhaps for more than one value of n)  in 
essentially the above way. He also confirmed the correctness of his theoretical result by 
an elegant measurement of the critical density gradient in a vertical circular tube. 
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n = O  n = l  n = 2  

I I 
I I I 

r = O  r = a  

FIGURE 2. The distribution of vertical velocity in a circular cylinder for a neutral disturbance to 
uniformly stratified fluid with K = 0 for the three azimuthal modes of lowest order. The density 
gradient in the undisturbed state is uniform. The signs + and - indicate regions of up and down flow 
respectively. 

Instead of observing the maximum gradient for which the fluid remains stationary, as 
one normally would in the case of stratified fluid between horizontal parallel planes, he 
observed the minimum density gradient for which convective overturning exists. He 
connected the top of a tube full of clear water to a reservoir containing a dyed solution 
of salt, and waited until the convective motions in the tube had stopped. The 
observation consisted of measuring the length of tube into which the dye had 
penetrated, from which the critical density gradient could be found. Taylor noted that, 
once it has been confirmed that the critical density gradient is consistent with the above 
critical Rayleigh number, this is an effective method of measuring the diffusivity of the 
salt in solution. 

In order to make the available results more complete we have calculated from the 
above analysis, with help from a computer in the handling of the fourth-order 
determinant, the smallest value of R for a neutral distuibance as a function of KU for 
the cases n = 0, n = 1 and n = 2, with results as show in figure 1.7 The expected 
minimum of each curve at K = 0 is confirmed. Figure gives some details of the 
velocity distribution at K = 0 associated with each of thkse modes which we have 
calculated. 

It is interesting to note that at large vertical wavenumbers the three curves 
corresponding to n = 0, 1 ,2  intersect and that there exists a range of values of KU for 
which the axisymmetric mode is, in fact, the most unstable. Moreover, all three curves 
approach the same straight line asymptotically as KLZ- 03 although not smoothly. 
These features are explicable if we recognize that at small vertical wavelengths the 
cylindrical walls have little influence on the planform of the flow. Aside from edge 
effects in regions near the circular boundary, the disturbance flow reduces to the 
cellular roll motion characterizing convection in an unbounded fluid, for which the 
neutral-stability relation takes the simple form 

\ 

1 

(3.15) 

t Yih gives explicitly the values of R at discrete values of KU for n = 0, and our values agree with 
his except that we find R = 518 at K a  = 1 and he gives R = 528. 
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where a is the horizontal wavenumber of a sinusoidal disturbance (BN1, $ 3 ) .  For any 
given value of K,  the most unstable (that is, having the smallest Rayleigh number) 
disturbance occurs at a = ~/ . \ / 2 ,  whence 

27 
4 

Rmi, = - ( K U ) ~ .  (3.16) 

This is the equation of the dashed line in figure 1, and it describes the asymptotic 
behaviour of all the curves at large Ka because at small vertical wavelengths all the 
azimuthal modes tend to unbounded-fluid roll motions and the distinction between 
them disappears. The wavy approach of the curves for n = 1 and n = 2 to the dashed 
line is probably a consequence of the fact that two-dimensional rolls are not exactly 
compatible with sectors of the circular cross-section. 

The curves in figure 1 correspond to the neutral disturbances with the smallest 
Rayleigh number for each value of the azimuthal mode number n and for given Ka. As 
would be expected of any eigenvalue problem posed on a bounded (here circular) 
domain, for each value of n and of K a  there exist higher sub-modes with increasingly 
oscillatory radial dependences in addition to the most unstable sub-mode represented 
in figure 1. Although at small values of ~a these sub-modes can be distinguished from 
each other by the number of zeros of w in the interval 0 < r < a, at larger values of K a  

different sub-modes (corresponding to neutral disturbances for the same n and Ka at 
different Rayleigh numbers) can have the same number of zeros. Thus, for example, at 
n = 1 and Ka = 5 the two smallest values of R at which a neutral disturbance exists are 
6106 and 8986, and for both these neutral disturbances w has one zero in the interval 
O < r < a .  

Hitherto there have been no numerical results for values of the growth rate y other 
than zero. We have therefore calculated from the determinantal eigenvalue equation 
values of ya2/(vD)i as a function of K a  and R, the Prandtl number v / D  being put equal 
to unity for simplicity. (Note that the properties of a neutral disturbance are 
independent of v/D.) Figure 3 (a)  shows the non-dimensional growth rate as a function 
of vertical wavenumber of the disturbance, for n = 1 and various small-to-moderate 
values of the Rayleigh number. The curves shown correspond to the fastest growing 
sub-mode for n = 1, hence the subscript max in ynEaz. There is further illustration here 
of the fact that a disturbance for which K = 0 is the most unstable. 

In some circumstances values of y at large values of R may be of practical interest, 
and so we extended the calculations to much larger values of R, including values for 
which effects of viscosity and diffusivity are likely to be negligible, the results being 
shown in figure 3(b). The variable on the ordinate scale here is 

We saw in 52 that in the inviscid diffusionless limit y is given by (2.12h), which in the 
case of a uniform density gradient and W cc cos KZ reduces to 

Here a is given by (2.16b), namely 

(3.17) 

Jk(aa) = 0. (3.18) 
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FIGURE 3. The largest of the values of the growth rate y corresponding to a given wavenumber K for 
a disturbance with azimuthal mode number IE = 1 and a given value of the Rayleigh number. 
Undisturbed state : stationary fluid with uniform density gradient in a vertical circular cylinder; and 
P = 1. (a) Smaller values of R, and y non-dimensionalized as yuz/(vD)z; (b) larger values of R at 
which effects of yiscosity and diffusion are likely to be small, and y non-dimensionalized as 
Y K g l P o )  (dP,/dZ))Z. 
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Ita 

FIGURE 4. Growth rates of a disturbance in unbounded fluid with uniform density gradient in the 
inviscid diffusionless limit given by (3.17) and (3.18) for n = 1 .  a,a is the smallest root of (3.18), 
a,a is the next smallest, and so on. 

Values of y as a function of K a  given by (3.17) and (3.18) are shown in figure 4 for 
yt = 1 and sub-modes corresponding to the five smallest roots of (3.18) (e.g. a, a = 1.84). 
These sub-modes can be ordered and counted. The largest growth rate for n = 1 and 
given K a  is found by choosing an indefinitely large root of (3.18) for aa for which w 
exhibits a correspondingly large number of oscillations in the interval 0 < r < a, so that 
in the inviscid diffusionless limit 

(3.19) 

for any value of K a .  On the other hand, at small non-zero values of v and D one would 
expect the fastest growing sub-mode to occur at a large but finite number of zeros of 
w in the interval 0 < r < a, in which event y would take a value less than that given by 
(3.19). The curves in figure 3(b)  are consistent with these expectations. 

The correspondence between the full analysis and the inviscid diffusionless limit for 
the azimuthal mode number n = 1 can be developed a little further, and proves to be 
interesting. In figure 5 we present calculations of y as a function of K a  at R = lo8 for 
each of the 20 sub-modes corresponding to the 20 largest of the possible values of y 
consistent with the chosen value of R. The uppermost of the 20 continuous curves 
shows the maximum value of y as a function of K, and so coincides with the uppermost 
curve in figure 3 (b). The second highest curve shows the second largest of the possible 
values of y, and so on. All the curves exhibit a striking step-like behaviour, and it is 
evident that collectively they describe a net composed of two intersecting families of 
curves. The down-steps trace out steep composite curves emanating from the upper 
left-hand corner of the figure. Each one of the steep curves made up of steps closely 
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FIGURE 5 .  As for figure 3(6), except that R = 108 for all the curves. The uppermost of the 20 curves 
shows the maximum value of y for a given value of KQ, and so coincides with the uppermost curve 
in figure 3 (b). The second highest curve shows the second largest of the possible values of y,  and so 
on. The interpretation of the net of two intersecting families of curves revealed by these 20 curves is 
given in the text. The broken lines, which are drawn only in the region outside the net, are the curves 
shown in figure 4 for the inviscid diffusionless limit. 

approximates one of the curves in figure 4 representing the relation (3.17) between y 
and K for an inviscid sub-mode corresponding to one of the roots of (3.18) (with 
n = 1). Thus, at large Rayleigh number the curve for each sub-mode in the full 
calculation describes a portion of each of the curves representing the inviscid (infinite 
Rayleigh number) sub-modes. 

The members of the second family of curves making up the net are nearly horizontal 
lines comprising nearly horizontal segments of the continuous curves, and their 
significance is as follows. The disturbance flow w corresponding to the fastest-growing 
sub-mode for n = 1 (the uppermost continuous curve in figure 5 )  has no zeros in the 
first nearly horizontal interval, one zero in the second such interval after the first down- 
step, two zeros in the third, etc. ; w for the second viscous sub-mode has one zero in the 
first nearly horizontal interval, two in the second, etc. ; w for the twentieth viscous sub- 
mode has nineteen zeros in the first nearly horizontal interval, twenty in the second, 
etc. ; and so forth. Thus, the nearly horizontal lines obtained by jumping from one sub- 
mode to another are each characterized by a fixed number of zeros of w in the interval 
0 < r < a:  no zeros for the top (and shortest) curve, one zero for the next highest, and 
so on. 

4. A sinusoidal variation of the undisturbed density 
The undisturbed fluid density is assumed here to have the steady form 

po +-pl(z) = p,( 1 + A sin KZ). (4.1) 
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In the absence of lateral boundaries this density distribution has been found to be 
highly unstable to disturbances with small horizontal wavenumbers, because a 
perturbation tilts the interleaved layers of heavy and light fluid and causes the heavy 
fluid to run down and collect in the troughs and the light fluid similarly to collect at 
the crests, thereby strengthening the original perturbation. Since the presence of a 
lateral boundary is generally incompatible geometrically with an indefinitely large 
horizontal wavelength of a disturbance, confinement within a vertical cylinder may 
materially affect the stability properties. Our purpose here is to quantify this effect for 
the case of a cylinder of circular cross-section. 

For a cylinder radius a much larger than the vertical period 2 7 ~ / ~  (i.e. aK 9 l), it 
seems likely that the flow in the core region of the cross-section closely approximates 
the unbounded-fluid motion, and that the boundary merely puts a lower bound of 
order a-l on the allowable horizontal wavenumbers. On the other hand, for a cylinder 
radius much smaller than the vertical period (aK + l), the disturbance flow must be 
driven by local instabilities in each half-period where the density stratification is 
statically unstable (cf. 0 3), with weak externally driven counter cells in the intervening 
statically stable intervals. These reasonable suppositions regarding the limiting cases 
will be tested by comparison with our numerical results. 

4.1. A numerical solution found from a Jinite-diflerence method 
For the sinusoidal base density profile (4.1) the dependence of the disturbance 
quantities upon the cylindrical coordinates r, 8, z is more complicated than in the 
constant-gradient case, where Fourier modes with respect to both 6' and z were 
uncoupled and the radial structure was expressible as a superposition of Bessel 
functions. Disturbances with different azimuthal mode numbers n are here still 
independent so we shall again be at liberty to assume a single trigonometric angular 
dependence indexed by n. However, since dpJdz is no longer constant, different 
Fourier modes of the disturbance with respect to z are coupled. Thus the r-dependent 
coefficients U,, V,, W,, P,, Q, appearing in the general Fourier series expansions 

m 

w = eYt(gaz//v) cos n6' C W,(r/a) cos mKz, 
m=o 

co 

uh = eyt(gaz//v) C {i, cos n6'Um(r/a) + io sin n6' V,(r/a)} sin mKz, 
m=O 

m 

p' = eYtpo ga cos n6' C P,(r/a) sin mKz, 
m=O 

m 

p' = eYtpo cos n6' C Q,(r/a) cos mKz 
m=o 

I 

1 
cannot be considered separately. As detailed below, coupling of the Fourier modes 
with respect to z is accounted for analytically in the manner of the three-term 
recurrence relation developed in BN1 for the unbounded-fluid case. Being unable to 
find an analytical representation of the r-dependence of the Fourier coefficients Urn, 
V,, W,, P,, Q,, we have resorted to finite-difference discretization. 

Note that we have imposed here an a priori restriction to the synchronous 
disturbance for which w is even and periodic in z with period 2 7 ~ / ~ ,  because this gives 
rise to the global tilting-sliding motion in the absence of lateral boundaries and was 
found in BN1 to be more unstable than any subharmonic disturbance. 



{Y-(n2 + 1>/5"(m~a)~-(ya~/v)} Vm(tJ-(2n/t2) u m ( t ) +  (nlQPm(5) = 0, 

{Y -n2//5, - (m~a) '  - (yoz/ v)} Wm(0 - mKaPm(6) - Q m ( 0  = 0, 
{ Y - n n 2 / ~ 2 - ( m ~ a ) 2 } P m ( ~ ) - m ~ a Q m ( [ )  = 0, 

w,(5>, m=O 

QmG) = iR 2K(f;)+ K(0, m = l  

with JV = 5(M+ 1)(N+ 1). Here, the sub-matrix A, represents the discretization of the 
left-hand sides of (4.3) for given m and B is very sparse because W, alone appears in 
the right-hand sides of the equations in (4.3). Equation (4.5) is directly analogous to 
the corresponding three-term recurrence relation (5.14) in BN1 applicable to the 
unbounded-fluid case. Eigenvalues of (4.5) are determined numerically with the help of 
EISPACK subroutines (Dongarra & Moler 1984). 

It is worth noting that the eigenvalue relation 

A, X, = RBX, (4 * 6 )  

(4.3) 
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Number of subdivisions Rayleigh number, R 

10 134.76076 
20 134.77836 
40 134.77966 

134.779 64 Exact value by method of $3 

TABLE 1. Values of the Rayleigh number computed by the finite-differFnce method for the case of 
constant density gradient with n = 1, ~a = 1, ya2/(vD)r = 1, P = 1 

describes the constant-gradient case discussed in $3.  We have checked our finite- 
difference scheme by applying it to the case of uniform density gradient and comparing 
the results with those obtained in $3 by the more analytical method. As an example of 
the accuracy of the computations, table 1 demonstrates the rapid convergence of the 
smallest eigenvalue of (4.6) to the Rayleigh number computed using the method of $ 3  
for specific parameter values. 

We saw in $ 3  that in the case of a uniform density gradient n = 1 is the most unstable 
azimuthal mode. We shall suppose, with no more than intuitive justification, that this 
is also true for a sinusoidal density profile, and shall therefore confine our numerical 
calculations here to the case n = 1. 

In discussion of values of KU ranging from very small to very large, it is convenient 
to introduce two Rayleigh numbers, namely 

gAm4 gA R, = - and R, = ~ 

WD V D K ~  

Both are based on the maximum undisturbed density gradient po AK, but they differ in 
the choice of characteristic lengths, a and K - ~  respectively. The first corresponds to the 
Rayleigh number defined in $3,  and is appropriate for the range KU + 1, in which the 
lateral boundary exerts a dominant influence on the flow. The second was introduced 
for the unbounded-fluid case in BN1 and is natural for the opposite range KU + 1, 
because fluid motion driven by the vertical stratification is affected in only a subsidiary 
way by the boundary. Figure 6 shows the calculated dependences of these Rayleigh 
numbers upon the dimensionless vertical wavenumber KU for neutral and non-neutral 
disturbances, and figure 7 displays calculated streamlines in the plane 8 = 0 for neutral 
disturbances at KU = 2 ;  and all these results apply when n = 1 and P = 1. 

4.2. The limiting cases K U + O  and KU+ 00 

As K U + O  the Rayleigh number R, approaches the value for a zero-wavenumber 
disturbance in a cylinder with constant gradient equal to po AK (i.e. the maximum value 
of po A ~ c o s  ~ z ) ,  represented by dashed lines in figure 6(a) .  Near z = 2 7 ~ p / ~ ,  where p is 
an integer, the undisturbed density gradient appears constant on the scale of the 
cylinder radius a and equal to po AK, so it is understandable that overturning sets in 
locally exactly as found in $ 3 .  Since there exist intervening layers of stably stratified 
fluid, the flow must close in rolls instead of being completely uniform in z (with weak 
externally driven rolls in the stably stratified intervals) but the vertical extent of the 
rolls is much larger than a, so the flow certainly approximates unidirectional motion 
near z = 2 n p / ~ .  

Further insight into the limit KU + 0 can be obtained by studying the set of coupled 
systems (4.3) with m = 0,1,2,  . . . , or its discretized version (4.5). As KU + 0,  the Fourier 
mode number m formally disappears from the governing equations, because m 
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0 0.2 0.4 0.6 0.8 1 .o 
log10 KL-l 

FIGURE 6. Results of a numerical finite-difference calculation for the Rayleigh number corresponding 
to a given growth rate of a disturbance to fluid in a vertical circular cylinder with sinusoidal density 
variation; n = 1 and P = 1 fof all curves. (a) Rayleigh number R, = a 4 ~ A g / v D  as a function of KLI 

for given values of ya2/(vD)?; (b) R, = A ~ / K ~ v D  as a function of KU for given ~ / K * ( V D ) ; .  The 
asymptotic straight lines at KU 6 1 and ~a % 1 are explained in the text. 
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U 0 
I I  / I  
7. L 

FIGURE 7. Streamlines of a neutral disturbance in the plane 0 = 0 through the axis of a circular 
cylinder; n = 1, p1 = po A sin KZ, K a  = 2.0. 

invariably appears in the form of the combination mKa. Thus, one might suspect that 
the intrinsic radial dependence of all the Fourier coefficients becomes independent of 
m, i.e. 

where U,  V,  W,  P, Q represent universal functions of [ and the C,(m = 0,1,2, . . .) are 
constants, as yet undetermined. Equivalently, in discretized form 

{Urn(O, Vrn(O9 Wm(Q,  Prn(O7 Qm<O>, = CmCU(EJ, v(8, w(O> P(O, Q<t>}, 

x, = c,x. (4.7) 

Substitution of (4.7) into (4.5) leads precisely to the system (4.6) with K a  = 0 for the 
eigenvalue R, and the functions U, V,  W,  P, Q comprising the eigenvector X, together 
with the recursion relation 

Thus, as K a  + 0, the eigenvalue R, approaches the zero-wavenumber value for the case 
of a constant density gradient of magnitude ~ , A K .  The solution of (4.8) is 

C, = 2C0Vm 3 1. (4.9) 

These Fourier coefficients describe the periodic delta distribution 

(4.10) 

Formal delta dependence implies that the z-interval where the flow has appreciable 
strength is small compared with the vertical period 2 n / ~ .  At the same time, we know 
this interval to be large compared with a. Thus, appreciable flow strength is confined 
to a region intermediate in scale between a and K-'. We have checked that the 
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numerically computed Fourier coefficients Um(c), Vm(t), Wm(Q, Pm(t),  Q,(Q seem to 
conform to (4.7) over an increasing range of m as K a + 0 .  Indeed the preceding 
considerations explain the observed slow convergence of the numerical scheme with 
increasing M in the limit KU --f 0. 

The fact that the value of R, for given y shown in figure 6(a)  is the same, when 
KU < 1, as for fluid in a vertical tube with a uniform density gradient of magnitude po KA 
does not involve the sinusoidal form of dpl/dz; all that is relevant is the maximum 
value of dpl/dz. It follows then that the same result holds for p1 equal to any periodic 
function of z with large wavelength which is continuous in z with bounded slope, 
whence the largest value of the density gradient for a neutral disturbance to fluid in a 
vertical tube for which p1 is periodic in z with wavelength large compared with a is 
given by 

In the limit KU+ co, the Rayleigh number R, for a neutral disturbance evidently 
becomes inversely proportional to KU. The empirical asymptote to the y = 0 curve 
which has been drawn as a broken line in figure 6(b) is given by R, = 5.924(~a)-', 
which is compatible quantitatively with the unbounded-fluid scaling law 

R, - 4 2 a / ~  when y = 0 (4.1 1) 

derived in BN1 if one defines a such that rc/a = 0 . 7 5 ~ .  This fits well with our 
expectation that the main influence of the walls upon the unbounded-fluid 
tilting-sliding mechanism is simply the selection of a dominant horizontal wavenumber 
a such that downflow occurs in one half of the cylinder cross-section and upflow in the 
other. Since a circular boundary is incompatible geometrically with the two- 
dimensional unbounded-fluid motion, one cannot expect the horizontal half-period 
rc/a to equal exactly the cylinder radius a, but the numerical correspondence is close. 
Calculated streamlines in figure 7 for KU = 2 bear a striking resemblance to streamlines 
for the unbounded-fluid case (see figure 5 ,  BNl), indicating the unimportance of the 
cylindrical walls. In particular, they again exhibit a central eye-shaped region of closed- 
roll motion separated from adjacent regions of upflow and downflow by dividing 
streamlines. 

For fixed non-zero y ,  the most unstable unbounded-fluid disturbance (i.e. the 
disturbance having the smallest Rayleigh number compatible with the given y )  was 
found in BN1 to occur at a finite horizontal wavenumber a, not a = 0. For example, 
for y / ~ ' ( v D ) ;  = 10 the minimum R, is 253 and occurs at a / ~  = 1.18. The unbounded 
system itself selects a dominant wavenumber a of order K ,  so in the limit as KU+ 00 the 
walls play no role (aside from causing edge effects very near the boundaries) in 
determining the Rayleigh number in the cylinder. The approach of the calculated curve 
for y / ~ ~ ( v D ) ;  = 10 to the asymptotic value R, = 253 in figure 6(b) represents 
confirmation of the numerical calculations. 

4.3. Inviscid diflisionless j h i d  
It was noted in 52 that simple supplementary results applicable to cases in which y P / v  
and y12/D are large may be obtained by putting v = 0 and D = 0 in the governing 
equations. These equations reduce to (2.12), and the allowable values of a for fluid 
contained in a vertical circular cylinder were seen to be given by the roots of 

J;(aa) = 0. (4.12) 
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The growth rate y is then to be found as an eigenvalue of (2.12 b)  after substitution of 
the appropriate expression for dp,/dz. 

In the present case p1 is given by (4.1) and the equation for W(z) becomes 

(4.13) 

It was found in $ 5  of BNl that a remarkably accurate solution of the more general 
form of (4.13) in which v and D are not equated to zero can be obtained by writing W 
as a Fourier series with period 2 n / ~  and truncating the series after a few terms. That 
procedure gave the algebraic equation (5.17) in BN1 for y in the case of the most 
unstable mode, and the form taken by that equation when v = 0 and D = 0 is 

(4.14) 

Note that in the case of unbounded fluid the analogous formula is (7.3) in BN1, which 
coincides with (4.14) when K/&+ co, as expected. Note also that in (7.3) in BNI 01 is 
an arbitrary horizontal wavenumber of a Fourier component of the disturbance, 
whereas here a must satisfy (4.12). Comparison may also be made with the formula 
(3.17) for y in the case of inviscid diffusionless fluid in a circular cylinder with a uniform 
undisturbed density gradient. Except when & / K  4 1 the two formulae, namely (3.17) 
and (4.14), give values of y of the same order of magnitude if the uniform density 
gradient is equated with a representative magnitude of the sinusoidal density gradient ; 
and when C L / K  4 1 the value of y given by (4.14) for the sinusoidal gradient is an order 
of magnitude larger than that given by (3.17) for the uniform gradient because the 
tilting-sliding mechanism operates in the former case but not in the latter. 

5. Uniform density outside a thin central layer 
It was shown in our previous paper (BN1,§6) that there are connections between the 

stability properties of unbounded fluid with a sinusoidal vertical density profile and 
those for fluid whose density in the undisturbed state is uniform except in a single 
horizontal central layer. In particular, the disturbance that is unstable at the smallest 
value of the Rayleigh number for given (large) horizontal wavelength involves a 
characteristic tilting and sliding of the thin layers of uniform density in both cases. 
Here we consider the effect of the presence of a vertical cylindrical boundary on the 
stability of fluid whose density po+pl has the uniform value po everywhere except in 
a central layer whose thickness I is small compared with the linear dimension a of the 
cylinder cross-section. Typical forms of the function p,(z) for consideration are those 
designated in BN1 as type 2 or 2' (with a single extremum, like a Gaussian function) 
and type 3 or 3' (with two extrema and zero total excess mass, like the derivative of a 
Gaussian function). It may be expected that the presence of the cylindrical boundary 
excludes disturbances with horizontal lengthscales larger than a and that this leads to 
a non-zero minimum Rayleigh number for neutrality, as was found in the previous 
section for a sinusoidal density profile. 

The general stability analysis of viscous fluid with variable density only in a central 
layer appears to be difficult when the effect of a rigid cylindrical boundary is included. 
Our analysis in this section will perforce be largely concerned with the simpler case of 
fluid which is effectively inviscid and diffusionless. In these circumstances there are no 
neutral disturbances, and degrees of instability under different conditions will be 
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indicated by relative values of the growth rate y. At the end of the section we return 
to the effects of viscosity and diffusion in order to be able to estimate the maximum 
growth rates of a disturbance. 

5.1. Asymptotic analysis for the case a1 4 1, v = 0, D = 0 
We saw in $2 that some of the allowed values of the generalized horizontal 
wavenumber a in this case are such that c1-l is comparable with the linear dimensions 
of the cylinder cross-section; there is no contradiction therefore in supposing that 

a l 4  1, 

where 1 is a measure of the thickness of the central layer. This assumption makes 
possible a simple local analysis of the tilting-sliding mechanism and an approximate 
derivation of the rate of growth of the disturbance. 

Outside the central layer the inviscid-fluid motion is irrotational, and with the 
requirement that W+O as z + k  00 we see that W(z) varies, according to (2.12b), as 
exp ( f  az). The vertical velocity component w is approximately continuous across the 
thin approximately horizontal layer, with value W, say, and so 

Wle-Orz for z > 0 
&eaz for z < 0. 

W(z) = 

Now consider the motion within the thin central layer. The mechanical process that 
generates the growing disturbance is the sliding of layers of heavy or light fluid tilted 
slightly from the horizontal. The local vertical displacement of a material lamina of 
fluid of density po+pl, q(xh) say, increases at the rate 

@/at = (w),=, = eYty F(xh), 

and the acceleration of the lamina due to gravity down (or up, if p1 < 0) a slope of small 
angle Vq to the horizontal is 

whence uh = -eyt WITVF, gP1 
Y Po 

The corresponding contribution to i3w/az is 

that is, gP1 
~ = -a2y,- 
dz Y Po 

d W  

(5.3) 

(5.4) 

within the central layer. 

second term within brackets (to be justified in a moment), to obtain 
We now integrate the governing equation for W(z) in (2.12), with neglect of the 

whence 
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where L indicates integration across the layer, with p1 = 0 at the two terminal points, 
and the square brackets denote a jump between those two termini. The jump in d W/dz 
is determined by the two outer irrotational flow fields (5.1) and is -2aW,. Hence on 
substituting the value of dW/dz given by (5.4) in the integral in (5.5) at points within 
the layer we find 

(5.6) 

in which, it will be recalled from $2, the value of a is given by Jh(aa) = 0. With this 
expression for y the order of magnitude of (g/y2po)(dpl/dz) is (al)-z, showing that the 
second term within brackets in (2.12b) for W(z) is indeed negligible when a1 < 1. 

This is a suitable point at which to correct an error in BNI which has some intrinsic 
interest. Section 7.2 in that paper described an energy argument giving the growth rate 
of a disturbance to unbounded inviscid diffusionless fluid whose density differs from po 
only in a central horizontal layer. The disturbance was assumed to vary sinusoidally 
with respect to a horizontal position coordinate, with wavenumber a. The result (5.6) 
should coincide with that found from the energy argument in BN 1, but in fact the value 
of y4 found there is larger by a factor 2. The reason for this discrepancy eluded us until 
we realized that the lateral sliding of a lamina of density po + p1 causes a local vertical 
volume flux uh.Vv, of which the mean over the cylinder cross-section S is 
approximately 

(Uh‘VY)  = - 

on use of the boundary condition (2.15) and the normalizing relation (2.13). In reality 
the mean vertical volume flux at the central layer must be zero in view of the supposed 
presence of an impermeable bottom to the container which provides the force 
(transmitted by pressure in the fluid) that balances the gravitational force on the layer. 
The presence of the spurious mean vertical volume flux has no consequences for the 
above set of relations between first-order disturbance quantities, but a second-order 
mean volume flux does play a part in the energy argument and makes a contribution 

to the rate of change of potential energy per unit horizontal area of the central layer. 
In order to correct the energy argument, therefore, the expression (5.8) must be 
deducted from the expression for dP/dt given in (7.13) of BN1; and the effect of this 
is to require the insertion of the factor f on the right-hand sides of the relations (7.13), 
(7.14) and (7.15) in BN1, thereby reconciling the result of the energy argument with our 
present result (5.6). The way in which the existence of the container bottom influences 
the energy argument is mathematically reminiscent of the effect of the constraint of 
constant liquid volume on the energy balance for a perturbed cylindrical column of 
liquid made unstable by the effect of surface tension (Chandrasekhar 1961, 5 11 1). 

We see from expression (5.6) for the growth rate that the effect of the vertical 
distribution of density in the undisturbed fluid is represented by the parameter 
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FIGURE 8.  The growth rate of a disturbance to fluid whose density differs fromp, only in a central layer 
of thickness 1 when v = 0 and D = 0. The dotted curve shows the result (5.6) of asymptotic analysis 
for af 6 1 ; the dashed curve represents a finite-difference solution of the governing equation for W(z) 
for the Gaussian density profile (5.10); and the continuous curve represents an exact solution of the 
governing equation for the piecewise-constant density profile (5.12). The horizontal wavenumber a 
is determined by satisfaction of the condition (2.16b) of no flux of fluid across the cylinder boundary. 

as may be understood from the fact that each lamina within the central layer slides 
independently of its neighbours (in inviscid diffusionless fluid) with a velocity 
proportional to pl /po.  The sign of pJp0 is immaterial, and in particular the qualitative 
difference between zero and non-zero values of the total excess mass in the central layer 
that we found at small Rayleigh numbers (BN1,96) does not exist. Note also that the 
maximum value of the density gradient in the central layer has no special relevance. In 
the particular case of the Gaussian density profile given by 

the expression (5.6) for the growth rate becomes 

y4 = 2-tx-&3g21~2, 

(5.10) 

(5.11) 

5.2. More accurate results for  particular density profiles when v = 0,  D = 0 
In order to be able to estimate the magnitude of the error in our asymptotic analysis, 
which is applicable for a14 1, we have found a numerical solution of (2.12b) for W(z) 
by finite-difference methods for the case of a Gaussian density profile (5.10). The 
resulting relation between y and a1 is compared in figure 8 with the asymptotic relation 
(5.6), with y being made non-dimensional by use of the factor Z for both curves so that 
the curve representing the asymptotic relation is applicable to any density profile. At 
a1 = 0.1 the value of y given by the asymptotic formula is only 6 % too large. An 
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FIGURE 9. A numerical check on the formula (5.4) relating the rapid variations of d W/dz and pl/po 
with z within the thin central layer. The undisturbed density p1 has the Gaussian form (5.10), and 
a1 = 0.1. 

interesting by-product of the numerical solution for the case of a Gaussian density 
profile is the continuous curve in figure 9 representing values of dW/dz (in non- 
dimensional form) as a function of az when a1 = 0.1. According to the asymptotic 
analysis, the rapid variation of dW/dz within the layer is identical with that of pl/po, 
and the comparison of the computed values of dW/dz with those given by (5.4) 
(together with (5.10) and (5.11)) shows that this is indeed so. 

In $6.2 of BNI we described an exact solution for a disturbance to unbounded fluid 
whose density differs from po  only in a central layer and is there piecewise constant. 
That solution can be adapted to the case in which v = 0 and D = 0 without difficulty. 
We include in figure 8 the resulting values of y as a function of al, for the simple density 
profile 

(5.12) 

Thus the asymptotic expression for y for an arbitrary density profile, the result of a 
numerical calculation for a Gaussian profile, and the explicit analytical result for the 
piecewise-constant profile all coincide when a1 < 1, as expected. The values of y for the 
two particular density profiles differ a little from each other when a1 = O(1) because 
only at small values of a1 is the effect of the density distribution represented by the 
parameter (5.9) used to make y non-dimensional. 

5.3. Maximum growth rates of a disturbance (Y $. 0, D =+ 0) 
It appears from the analysis for an inviscid diffusionless fluid given above that the 
largest growth rates are associated with the more oscillatory disturbances having large 
values of a. Rayleigh-Taylor instability of inviscid fluid shows the same feature. 

15 FLM 252 
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FIGURE 10. Growth rate y as a function of ccl for the piecewise-constant density profile (5.12) at 
several different values of R(= 2glAJ13/vD) according to the exact solution given in BNl for 
unbounded fluid. The curve for R +  cc asymptotes to the relation (5.6) at a1 < 1 (shown as a broken 
line) and to the Rayleigh-Taylor relation (5.17) at a1 9 1. 

However, viscous and diffusion effects will dampen the disturbance increasingly as a 
is increased. We may expect therefore that in reality there is a maximum of y at some 
value of al. The value of y at its maximum and the value of a1 at which it occurs, both 
as functions of R, represent useful pieces of information in any practical application. 
We now show that some of this information can be obtained from the known exact 
solution for a disturbance to unbounded fluid with a piecewise-constant density profile. 

We must first recognize that the exact solution in question refers to infinite fluid 
without boundaries. whereas our objective in this paper has been to take account of the 
effect of a cylindrical boundary. However, the maximum value of y in the case of 
unbounded fluid may be seen from figures 12(b), 12(c) and 12(d) in BNl to occur at 
a value of a1 which increases with the Rayleigh number; and the larger the number of 
oscillations of the disturbance along a horizontal line, the smaller will be the effect of 
the boundary. This was seen, for instance, in $ 3  where figure 1 shows that curves 
relating to bounded and unbounded fluid come together as the vertical wavenumber 
- which here specifies both vertical and horizontal lengthscales of the disturbance - 
increases relative to the cylinder radius. It is likely therefore that for large enough 
values of the Rayleigh number the maximum of y occurs at a value of a1 sufficiently 
far above unity for the effect of the presence of the boundary to be negligible. Judging 
by figure 1, the disturbance wavelength does not have to be much smaller than the 
horizontal dimension of the containing cylinder for the effect of the boundary to be 
small in the case of uniformly stratified fluid. A similar statement applies to the 
sinusoidal density variation considered in 94. For that case figure 6 shows that the 
minimum Rayleigh number corresponding to a given growth rate y rapidly approaches 
the unbounded-fluid value with increasing Ka.  
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The exact solution described in $6.2 of BN1 applies to undisturbed density profiles 
which are piecewise constant and to arbitrary values of the Rayleigh number. The key 
formula for the simple profile (5.12) having two discontinuities is equation (6.23) in 
that paper, namely 

go12JAJ = { F"(0)]2 - [ fo(21)]2}-f, 
VD 

where, as set out in (6.4) of BN1, 

and 

(5.13) 

(5.14) 

(5.15) 

In figure 10 we show graphically the relation between yf i /giAi  and af  for P = 1 and 
a number of different values of the Rayleigh number 

R = 2glA1f3/uD 

according to this exact solution. (For comparison with the two dotted curves in figure 
12(b) of BNl, where the ordinate scale differs by the factor Ri, note that 1MJ there is 
replaced by 2114 here.) The curve in figure 10 for the limit R --f co, corresponding to 
inviscid diffusionless fluid, may be seen from (5.13)-(5.15) to be given analytically by 

y21/gJAJ = !pf(1 -e-4a1)i. (5.16) 

When a1 + 1 the right-hand side of (5.16) reduces to (a@, thereby reproducing the 
expression for y in (5.6) found from local analysis of inviscid motion in the central 
layer. And when a1 + 1, (5.16) reduces to 

Y2 = +a:gI4, (5.17) 

which is the formula for the growth rate in Rayleigh-Taylor instability of an interface 
in inviscid fluid across which there is a density jump of non-dimensional magnitude JAJ.  
This was to be expected because a disturbance of very short wavelength responds 
independently to the two interfaces specified in (5.12) (I now being irrelevant) and 
responds with growth at the one interface at which the heavier fluid is above lighter 
fluid. 

At any finite value of R, the expression for yli/g$4lf has a maximum at some value 
of a f  and crosses the abscissa at a larger value of al. It may readily be shown from the 
relations (5.13)-(5.15) that y is zero at a value of a1 which is given approximately by 

3 
32 

( ~ 4 1 ) ~  = - R (5.18) 

as soon as a1 > 1. The value of a1 at which y is a maximum is not given conveniently 
by an explicit formula, but increases with R in a generally similar way as may be seen 
from the curves in figure 10. Note that I cancels from the two sides of (5.18), the layer 
thickness being irrelevant to the stability properties when a1 9 I .  The smallest value of 
IAl at which a neutral disturbance exists is related by (5.18) to the smallest value of a: 
allowed by the boundary condition, which we saw in $5.1 to be of order a-l. 

The preceding powerful general solution holds for all values of the relevant 
parameters, but is restricted to piecewise-constant density distributions in the central 
layer. We shall give numerical results for one further such profile, namely 

15-2 
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FIGURE 11. As for figure 10, but relating to the piecewise-constant density profile (5.19), for which 
the Rayleigh-Taylor asymptote at a2 9 1 is (5.20). 

(5.19) 

corresponding to what in BNI was called a central layer of type (3’) if A > 0 (as will 
be supposed here). The explicit formula analogous to (5.13) is more complicated in this 
case. In figure 11 we show yli/giAi as a function of a1 for P = 1 and different values 
of R, defined again for convenience as 2gA13/vD. The shapes of the curves are generally 
similar to those in figure 10, and in particular maxima occur at values of a1 which 
increase with R. The asymptote for the curve corresponding to R+ a3 at a1 4 1 is 
derived from (5.6) like that in figure 10, and the Rayleigh-Taylor asymptote at 
a1 + 1 is 

y 2  = agA, (5.20) 

which differs from (5.17) because the density jump at the central (unstable) interface is 
here 2A. Note that the results are different when A < 0 (corresponding to a central 
layer of type 3). 

6. A resume of the two papers 
We conclude with a brief review of what has been achieved in this paper and its 

predecessor BN1. The two papers together record an investigation of the behaviour of 
small disturbances to fluid of infinite vertical extent which initially is stationary and 
whose density varies in the vertical direction. The primary novelty of the problem lies 
in the fact that the undisturbed density gradient is zero on average over a large vertical 
range. The two basic types of density variation of this kind are (i) sinusoidal and (ii) 
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variation confined to a central layer. These density profiles have not been studied 
before, and necessitated the construction of mathematical methods ab initio. Insofar as 
the boundary is relevant we have assumed it to be a vertical rigid impermeable circular 
cylinder. Within this general specification of the project we have found a variety of 
mechanical processes and numerous new results for the growth rates of normal modes 
of disturbance. We have not restricted ourselves to specific objectives, and have felt free 
to explore interesting aspects of unstable behaviour and to formulate broad 
conclusions. 

As a preliminary we have reviewed past work by Hales (1937), Taylor (1954), and 
Yih (1959) on the stability of uniformly stratified fluid in a long vertical tube and 
extended the ranges of values of the Rayleigh number and the vertical wavenumber ( K )  

of the disturbance for which the growth rate is known. In particular we have solved the 
governing equation for a neutral disturbance to find the Rayleigh number for given KU 

for each of the first three azimuthal modes of the disturbance in a circular tube. (This 
is, incidentally, the first solution for a disturbance which is neither axisymmetric nor 
two-dimensional nor z-independent, and it requires the satisfaction of an additional 
boundary condition and the determination of a fourth independent solution of the 
eigen-equation which is found to be connected with the vertical vorticity of the 
disturbance.) Although the first non-axisymmetric mode is neutral at a much smaller 
value of R than the axisymmetric mode when KU is of order unity or smaller, the 
difference between the critical Rayleigh numbers for the various azimuthal modes 
disappears when ~a >> 1. At these large vertical wavenumbers there is a correspondingly 
small horizontal lengthscale of the disturbance, and the effect of the cylindrical 
boundary vanishes asymptotically, demonstrating the existence of a simple limiting 
state of which we make use in the case of other density profiles. We have also obtained 
numerical values of y as a function of Ka for various given values of R, including such 
large values that the fluid is effectively inviscid and diffusionless. At large values of Ka 

there may be many combinations of Ka, R and the sub-mode corresponding to the 
horizontal wavenumber of the disturbance which yield the same value of y ,  requiring 
care in the identification of the disturbance with the largest growth rate at given R. An 
important reason for addressing here the case of constant density gradient is that it 
describes the asymptotic behaviour of systems with nonlinear undisturbed density 
profiles in the limit as the cylinder radius becomes much smaller than the vertical 
lengthscale over which the density varies. 

The origin of the whole investigation was a speculation by one of us (Batchelor 1991) 
that, if a fluidized bed is unstable to plane waves of particle concentration with 
horizontal wave fronts, the continual increase in the amplitude of these waves will lead 
to a secondary or over-turning instability which will destroy the horizontal 
homogeneity. Confirmation of that hypothesis requires a consideration of two-phase 
flow, and in preparation for that we have here asked whether a sinusoidal vertical 
distribution of fluid density is unstable and if so what is the form of the disturbance 
that grows most rapidly. The answer is not obvious, and we did not anticipate finding 
that in unbounded fluid ($5, BNI) a disturbance of sufficiently large horizontal 
wavelength will grow exponentially at any amplitude of the sinusoidal density 
variation. The nature of the disturbance motion is also interesting; the velocity 
associated with a disturbance of large horizontal wavelength is approximately vertical 
everywhere and tilts the alternate layers of heavier and lighter fluid, causing the heavier 
layers to slide down and the lighter fluid to slide up, leading in turn to a periodic 
horizontal variation of the vertically averaged density and thereby to reinforcement of 
the vertical motion. This efficient process for the release of potential energy of the Auid 
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operates at all Rayleigh numbers, including large values at which v and D are effectively 
zero. In this latter case each initially horizontal thin lamina of fluid slides independently, 
and a simple local analysis recovers the asymptotic expression for y (and is applicable 
to the more general case of an undisturbed density which is a periodic but not 
necessarily sinusoidal function of z ) .  

It is surprising that the stability of a sinusoidal density profile has not previously 
been investigated. This may be because others have been less willing to adopt our 
assumption that the change with time in the basic density distribution due to diffusion 
may be neglected. We cannot justify this assumption in general, but there are 
undoubtedly situations in which small values of the diffusivity are relevant, or in which 
there is no effect of diffusion on the particular parameter of the density distribution 
that is relevant to instability, or (as in the case of a fluidized bed) there is another 
physical process in operation (namely particle inertia) which can bring about a 
constant form of the density variation despite the smoothing effect of particle diffusion. 

The smallest value of the Rayleigh number R( = ~ A / K ~ v D )  at which a neutral 
disturbance with horizontal wavenumber 01 in unbounded fluid with a sinusoidal 
density profile exists tends to y ’ 2 a / ~  as 01/~+0. However, in the presence of a 
cylindrical boundary 01 is no longer arbitrary and must be determined from the 
boundary conditions. This changes the nature of the relation between R and ~a for a 
neutral disturbance, although not in the limit KU --f co. At the other extreme, KU + 0, the 
boundary dominates the behaviour of the disturbance, and the smallest uniform 
density gradient in fluid in a vertical tube at which a neutral disturbance exists is the 
same as the critical value of the density gradient at the place in a sinusoidal profile in 
the tube where the gradient is a maximum. Our numerical finite-difference solution for 
the r-dependence of a disturbance (the dependence on z and 8 being represented by 
Fourier series) reveals these limiting forms of behaviour explicitly. 

Although we do not know of any direct practical application, we think the problem 
of stability of a central horizontal layer in which the fluid density departs from its 
uniform value outside the layer is of sufficient intrinsic interest to justify the 
investigation described in the two papers. Mathematically it has some features in 
common with the stability of a transition layer between two regions of different 
density; and the tilting-sliding mechanism of instability is relevant when a1 + 1. We 
have explored several mathematical methods, applicable under different conditions, 
and will single out one for mention here in view of its unusual power. This method 
gives the exact solution for the case of a piecewise-constant density profile as well as 
asymptotic solutions for arbitrary density profiles in unbounded fluid. It begins with 
Fourier transformation of all terms in the governing equation for W(z) (see (6.1) in 
BN 1). For piecewise-constant density profiles the convolution integral contains the 
product of the density gradient, which is a sum of delta functions, and W(z). Inversion 
and use of an identity established by contour integration then leads, remarkably, to an 
exact solution in closed form for any value of y ,  R and al. This solution remains valid, 
approximately, in the presence of a cylindrical boundary provided / / a  < 1. 
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Appendix: Proof that K = 0 gives the minimum critical Rayleigh number in 
the case of constant density gradient 

By M. R. E. Proctor 
Department of Applied Mathematics and Theoretical Physics, 

University of Cambridge, Silver Street, Cambridge CB3 9EW, UK 
We begin with equations (2.1)-(2.3) and consider an arbitrary cylindrical container 
with generators parallel to the vertical z-axis and of infinite length in the z-direction. 
We suppose that 1 is a characteristic horizontal dimension of the cylinder, and that the 
undisturbed density gradient dpJdz is po /3 where B is a positive constant. Then scaling 
lengths with 1, velocities with D/1, time with P/D, p’ with plpo and p’ with po uD/l2, we 
obtain the dimensionless equations 

v*u = 0, ( A  1) 

aP’ -+ w = VZp’, 
at 

where 
If we seek steady solutions that are periodic in z with period 2 x 1 ~  we may set the time 

derivative terms in ( A  2)-(A 3 )  equal to zero. It may then be seen, by using the 
boundary conditions (2.7), that R may be written as the homogeneous functional 

= v/D and the Rayleigh number R = JgJPl4/Dv. 

where the bracket denotes an average over the cylinder : 

(.) = 2nA [”Kdz//Adxdy(.) ,, 

and A is the cross-sectional area of the cylinder in the ( x ,  y)-plane. Elementary calculus 
of variations then shows that the Euler-Lagrange equations for the extrema of the 
functional ( A  4)  with respect to variations of u,p’ that preserve the boundary 
conditions (2.7) and the incompressibility constraint (2.1) are in fact identical with 
( A  2), (A 3 )  (with a /a t  = 0). Thus the eigenvalues R are extrema of ( A  4) and the 
minimum R m i n ( ~ )  gives the smallest Rayleigh number for a neutral disturbance. 

Now select a trial function (a,;) satisfying (2.7) and denote the value of R for this 
trial function by R.  Then we have 

Thus R 2 ŝ  for any trial function, and so 2 Smin, where Smin is the minimum of $ 
as f i ,  6 are varied over all functions satisfying n.Vb = + = 0 on the cylinder walls. 
(These conditions are certainly contained in (2.7) and GJ is now less constrained since 
V . 2  = 0 is not imposed.) Thus, since (a,;)  are arbitrary, SnLilL certainly gives a lower 
bound on the critical value Rmin. But the Euler-Lagrange equations for the extrema of 
ŝ  contain no z-derivatives, and are satisfied by the steady solutions of ( A  1)-(A 3 )  
which are independent of z (in which case uk 5 0 and ( A  1)  is trivially satisfied). Thus 
Smin, which is in fact Rmin(0), is also the minimum of R m i n ( ~ )  as K is varied, and this 
is the result that was to be proved. 
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In the case that the bounding cylinder is circular in cross-section, the equations can 
be separated in the azimuthal coordinate 0, and one can study a separate stability 
problem for solutions of the form eiine for every integer n. It is easy to see that the 
arguments of the preceding paragraph can be adapted to this case, so that we can assert 
that, for each n, K = 0 gives the lowest critical Rayleigh number. This result makes it 
possible to obtain simple expressions for the critical numbers for every n, since the 
solution of the governing equations is straightforward when K = 0. 
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